
Event Sourcing
What it is and how it looks like

1

Traditional Approach
class Product {

 val id = 42

 fun update(...) {

 this.name = “Coca-Cola”

 this.price = 1.99

 }

}

repository.save(product)

ID | Name | Price

---|------------|----------

42 | Coca-Cola | 1.99

43 | Water | 0.99

2

The current state is saved in a
relational database. We load

the object, change it and save
it back.

Pros and Cons
+

● Easy and familiar concept
● Simple querying of data
● A lot of experience with this model
● Good framework support

-

● No historical data

3

Event Sourcing Approach
class Product {

 val id = 42

 fun update(...) {

 ...

 return ProductUpdatedEvent(42, “Coca-Cola”, 1.99)

 }

}

eventBus.publish(event)

eventStore.save(event)

ID | Type | Data

---|---------------------|----------------------------
-

42 | ProductCreatedEvent | { 42, Cola, null }

42 | PriceUpdatedEvent | { 42, 0.00 }

42 | ProductUpdatedEvent | { 42, Coca-Cola, 1.99 }

43 | ProductUpdatedEvent | { 43, Water, 0.99 }

4

All state changes are
published as events! No
change without an event!

Event Sourcing Approach

ID | Type | Data

---|---------------------|----------------------------
-

42 | ProductCreatedEvent | { 42, Cola, null }

42 | PriceUpdatedEvent | { 42, 0.00 }

42 | ProductUpdatedEvent | { 42, Coca-Cola, 1.99 }

43 | ProductUpdatedEvent | { 43, Water, 0.99 }

● Only events are saved, no state! *
● To get the current state, we must “replay” all events (for the according ID)

5

All events for a certain
product. Their data and

sequence define the current
state of the product.

* There’s an exception to this rule: We can create a dedicated read
model for better performance. See slide 19.

Pros and Cons
+

● Historical data (== log of all events)
● Simple database schema

-

● Complicated programming model
● Tough reading/querying of data
● Less framework support

6

What means “replaying”?
● We don’t save and load a single state/set of data (== traditional approach)
● We save and load a list of events
● We apply one event after another to finally come to the current state

val events = eventStore.findAllById(42)

val product = Product().applyAll(events)

7

ID | Type | Data

---|---------------------|----------------------------
-

42 | ProductCreatedEvent | { 42, Cola, null }

42 | PriceUpdatedEvent | { 42, 0.00 }

42 | ProductUpdatedEvent | { 42, Coca-Cola, 1.99 }

43 | ProductUpdatedEvent | { 43, Water, 0.99 }

So replaying means...
● Loading a list of events from a local database
● Applying those events one after another
● Changing the internal state of a domain object each time
● It’s the default way of storing data
● Everytime we need an object we replay events (so we do it all the time!)
● Events contain _all_ data (not just an ID)

8

And replaying doesn’t mean...
● Actually sending events over the message bus (== Kinesis, ActiveMQ, ...)
● No other system is involved - it’s just locally!
● Replaying doesn’t cause any side effects - just state is updated
● There’s no “replay mode” or “fallback flag”
● We don’t do it in a specially exception edge case - we do it all the time!

9

Consequences

Applying an event changes data, but doesn’t
cause side effects.

Executing a command may cause side
effects and lead to events.

10

Let’s see some code (1/2)
val events = eventStore.findAllById(42)

val product = Product().applyAll(events)

// Now that we have an object with the current state,

// let’s do some business operation on it!

val command = UpdateProductCommand(“Pepsi” 2,49)

val newEvents = product.execute(command)

eventBus.publish(newEvents)

eventStore.save(newEvents) ID | Type | Data

---|---------------------|----------------------------
-

42 | ProductCreatedEvent | { 42, Cola, null }

42 | PriceUpdatedEvent | { 42, 0.00 }

42 | ProductUpdatedEvent | { 42, Coca-Cola, 1.99 }

42 | ProductUpdatedEvent | { 42, Pepsi, 2.49 }

43 | ProductUpdatedEvent | { 43, Water, 0.99 }

11

Let’s see some code (2/2)
class Product {

 fun execute(UpdateProductCommand) {

 // Business logic, calculating stuff, log messages

 // and finally return an event

 return ProductUpdatedEvent(...)

 }

 fun apply(ProductUpdatedEvent) {

 // Apply data! Don’t do anything else!

 this.name = event.name

 this price = event.price

 }

}

12

ID | Type | Data

---|---------------------|----------------------------
-

42 | ProductCreatedEvent | { 42, Cola, null }

42 | PriceUpdatedEvent | { 42, 0.00 }

42 | ProductUpdatedEvent | { 42, Coca-Cola, 1.99 }

42 | ProductUpdatedEvent | { 42, Pepsi, 2.49 }

43 | ProductUpdatedEvent | { 43, Water, 0.99 }

Important: Don’t
change state here!

State only changes in
reaction of an event!

Integrating External
Systems

13

Integrating External Systems (1/3)
● Systems often communicate via asynchronous messages
● Usually those messages are events (rather then commands)

14

Order
Service

Invoice
Service

Message Bus

publishes: subscribes:

OrderCreated OrderCreated

E.g. after a customer
has submitted his

shopping cart.

E.g. to prepare
a new invoice.

Integrating External Systems (2/3)
So should we save those events?

15

Order
Service

Invoice
Service

Message Bus

OrderCreated OrderCreated

Save this one?

Integrating External Systems (3/3)
So should we save those events?

- No, better not.

● We cannot control the format of external events, which would become part of
our persistence.

● External events don’t necessarily apply to our domain directly. Usually we run
business logic on them to validate and transform the to our context.

So no, don’t save messages from external systems!

16

Invoice
Service

We only want to store
our own data. Which

means our own
domain events!

Advanced Topics

17

Advanced Topics: Snapshots
● Applying a lot of events (hundreds? thousands?) can be inefficient
● To solve this, old events are merged together
● Historical data will be lost…
● ...but the number of events is reduced

18

ID | Type | Data

---|---------------------|----------------------------
-

42 | ProductCreatedEvent | { 42, Cola, null }

42 | PriceUpdatedEvent | { 42, 0.00 }

42 | ProductUpdatedEvent | { 42, Coca-Cola, 1.99 }

42 | ProductUpdatedEvent | { 42, Pepsi, 2.49 }

43 | ProductUpdatedEvent | { 43, Water, 0.99 }

ID | Type | Data

---|---------------------|----------------------------
-

42 | ProductUpdatedEvent | { 42, Pepsi, 2.49 }

43 | ProductUpdatedEvent | { 43, Water, 0.99 }

Advanced Topics: Read Model
● Applying a lot of events (hundreds? thousands?) can be inefficient
● And even if there are just a few events, querying the data is difficult
● To solve this, we can create a write model for queries (CQRS)
● Usually, this is a common relational database where data is duplicated

19

ID | Type | Data

---|---------------------|----------------------------
-

42 | ProductCreatedEvent | { 42, Cola, null }

42 | PriceUpdatedEvent | { 42, 0.00 }

42 | ProductUpdatedEvent | { 42, Coca-Cola, 1.99 }

42 | ProductUpdatedEvent | { 42, Pepsi, 2.49 }

43 | ProductUpdatedEvent | { 43, Water, 0.99 }

ID | Name | Price

---|------------|----------

42 | Coca-Cola | 1.99

43 | Water | 0.99

Demo

https://github.com/bringmeister/event-sourcing-with-kotlin

20

https://github.com/bringmeister/event-sourcing-with-kotlin

Resources
● http://microservices.io/patterns/data/event-sourcing.html

○ A short description of the pattern including some sample code and additional resources. This is
a good starting point to get a first impression of event sourcing. The page also shows related
patterns as well as pros and cons.

● http://engineering.pivotal.io/post/event-source-kafka-rabbit-jpa
○ A demo from Pivotal showing a small example using DDD, event sourcing, commands and a

nice CQRS implementation. You will find the source code on GitHub.
● http://www.baeldung.com/axon-cqrs-event-sourcing

○ A brief example of DDD and event sourcing with the AXON framework.
● https://www.maibornwolff.de/blog/event-sourcing-part1

○ A discussion on event sourcing in combination with CQRS.
● https://ookami86.github.io/event-sourcing-in-practice/#making-eventsourcing-work

○ A presentation on a lot of different aspects of Event Sourcing.

21

http://microservices.io/patterns/data/event-sourcing.html
http://engineering.pivotal.io/post/event-source-kafka-rabbit-jpa/
http://www.baeldung.com/axon-cqrs-event-sourcing
https://www.maibornwolff.de/blog/event-sourcing-part1
https://ookami86.github.io/event-sourcing-in-practice/#making-eventsourcing-work

